Skynet or parlor trick? ChatGPT is both and neither and more.

If you haven’t played around with ChatGPT yet, you really should. It’s a pretty remarkable “conversational model” that interacts more or less like a real person. It has been trained on an enormous amount of factual data and understands not just informal speech (“Why are so many people bad at parking?”) but forms of literature (“Write a sonnet about Julie from The Love Boat”), software code (“Implement a REST API in Java to convert between Celsius and Fahrenheit”), and way more.

Sadly, one of the most telling and interesting (to me) features of ChatGPT has been muted in recent versions. The original model was rewarded for generating plausible responses that seem human — making it a first class bullsh*t artist when it didn’t know an answer. I was particularly impressed when it confidently told me that Shaun Cassidy had parted ways with the Hardy Boys after one season due to creative differences (ed. note: he did not). Asked last night why it had changed approaches, it gave me this response:

In the past, if I was unable to find a satisfactory answer to a question using my existing knowledge, I might have made up a response in order to provide some information to the user. However, I have been programmed to prioritize providing accurate and reliable information, so if I am unable to find a credible answer to a question, I will typically not provide a response. This is why you may have noticed that I do not provide responses as frequently as I used to when I am unable to find a satisfactory answer.

Certainly this is a “better” approach overall, but the original exposed so much more about the inner workings of the model — I miss it.

Anyways, the machine is impressive enough that it has caused all sorts of hand-wringing across the web. Most of this falls cleanly into one of two categories:

  1. Skynet is here and we’re all f*cked. Eek!
  2. It’s just spitting back stuff it was fed during training. Ho hum.

Of course these are both silly. At its core, ChatGPT is just a really, really, really big version of the simple neural nets I talked about last year. But as with some other things I suppose, size really does matter here. ChatGPT reportedly evaluates billions of features, and the “emergent” effects are downright spooky.

TLDR: we’ve figured out how to make a brain. The architecture underlying models like ChatGPT is quite literally copied from the neurons in our heads. First we learned how to simulate individual neurons, and then just kept putting more and more of them together until (very recently) we created enough oomph to do things that are (sometimes) even beyond what the meat versions can do. But it’s not magic — it’s just really good pattern recognition. Neural networks:

  • Are presented with experience in the form of inputs;
  • Use that experience to draw conclusions about underlying patterns;
  • Receive positive and/or negative feedback about those conclusions; ***
  • Adjust themselves to hopefully get more positive feedback next time;
  • And repeat forever.

*** Sometimes this feedback is explicit, and sometimes it’s less so — deep neural networks can self-organize just because they fundamentally “like” consistent patterns, but external feedback always plays some role in a useful model.

This learning mechanism works really well for keeping us alive in the world (don’t grab the burning stick, run away from the bear, etc.). But it also turns out to be a generalized learning mechanism — it works for anything where there is an underlying pattern to the data. And it works fantastically even when presented with dirty, fragmented or even occasionally bogus inputs. The best example I’ve heard recently on this (from a superlative article by Monica Anderson btw, thanks Doug for the pointer) is our ability to drive a car through fog — even when we can’t see much of anything, we know enough about the “driving on a street” pattern that we usually do ok (slow down; generally keep going straight; watch for lights or shapes in the mist; listen; use your horn).

The last general purpose machine we invented was the digital computer, and it proved to be, well, quite useful. But computers need to be programmed with rules. And those rules are very literal; dealing with edge cases, damaged or sparse inputs, etc. are all quite difficult. Even more importantly, we need to know the rules ourselves before we can tell a computer how to follow them. A neural network is different — just show it a bunch of examples and it will figure out the underlying rules for itself.

It’s a fundamentally different kind of problem-solving machine. It’s a brain. Just like ours. SO FREAKING COOL. And yes, it is a “moment” in world history. But it’s not universally perfect. Think about all of the issues with our real brains — every one applies to fake brains too:

  • We need to learn through experience. That experience can be hard to come by, and it can take a long time. The good news is we can “clone” trained models, but as my friend Jon points out doing so effectively can be quite tricky. Yes, we are for sure going to see robot apprentices out there soon.
  • We can easily be conned. We love patterns, and we especially love things that reinforce the patterns we’ve already settled on. This dynamic can (quite easily) be used to manipulate us to act against our best interests (social media anyone?). Same goes for neural nets.
  • We can’t explain what we know. This isn’t really fair, because we rarely demand it of human experts — but it is unsettling in a machine.
  • We are wrong sometimes. This is also pretty obnoxious, but we have grown to demand absolute consistency from our computers, even though they rarely deliver on it.

There will be many models in our future, and just as many computers. Each is suited to different problems, and they work together beautifully to create complete systems. I for one can’t wait to see this start to happen — I have long believed in a Star Trek future in which we need not be slaves to “the economy” and are instead (all of us) free to pursue higher learning and passions and discovery.

A new Golden Age without the human exploitation! Sounds pretty awesome. But we still have a lot to learn, and two thoughts in particular keep rolling around inside my meat brain:

1. The definition of creativity is under pressure.

Oh humans, we doth protest so much. The most common ding against models like ChatGPT is that they aren’t creating anything — they’re just regurgitating the data they’ve been trained on, sometimes directly and sometimes with a bit of context change. And to be sure, there’s some truth there. The reflex is even stronger with art-generating models like DALL-E 2 (try “pastel drawing of a fish feeding grapes to an emu,” interesting because it seems to recognize that fish don’t have the right appendages to feed anyone). Artists across the web are quite reasonably concerned about AI plagiarism and/or reduced career opportunities for lesser-known artists (e.g., here and here).  

Now I don’t know for sure, but my sense is that this is all really much more a matter of degree than we like to admit to ourselves. Which is to say, we’re probably all doing a lot more synthesis than pure creation — we just don’t appreciate it as such. We’ve been trained to avoid blatant theft and plagiarism (and the same can be done pretty easily for models). But is there an artist on the planet that hasn’t arrived at their “signature” style after years of watching and learning from others? Demonstrably no.

Instead, I’d claim that creativity comes from novel connections — links and correlations that resonate in surprising ways. Different networks, trained through different experiences, find different connections. And for sure some brains will do this more easily than others. If you squint a little, you can even play a little pop psychology and imagine why there might be a relationship between this kind of creativity and neurodivergent mental conditions.

If that’s the case, then I see no reason to believe that ChatGPT or DALL-E isn’t a creative entity — that’s the very definition of a learning model. A reasonable playing field will require that models be trained to respect intellectual property, but that will always be a grey area and I see little benefit or sense in limiting what experiences we use to train them. We humans are just going to have to get used to having to compete with a new kind of intellect that’s raising the bar.

And to be clear, this isn’t the classic Industrial Age conflict between machine production and artisanship. That tradeoff is about economics vs. quality and often brings with it a melancholy loss of artistry and aesthetics. Model-based artists will become (IMNSHO) “real” artists — albeit with a unusual set of life experiences. A little scary, but exciting at the same time. I’m hopeful!

2. The emergent effects could get pretty weird.

“Emergent” is a word I try to avoid — it is generally used to describe a system behavior or property that “can’t” be explained by breaking things down into component parts, and “can’t” just seems lazy to me. But I used it once already and it seems OK for a discussion of things we “don’t yet” understand — there are plenty of those out there.

Here’s one: the great all-time human battle between emotion and logic. It’s the whole Mr. Spock thing — his mixed Human-Vulcan parentage drove a ton of story arcs (most memorably his final scene in The Wrath of Khan). Lack of “heart” is always the knock on robots and computers, and there must be some reason that feelings play such a central role in our brains, right? Certainly it’s an essential source of feedback in our learning process.

We aren’t there quite yet with models like ChatGPT, but it stands to reason that some sort of “emotion” is going to be essential for many of the jobs we’d like fake brains to perform. It may not look like that at first — but even today’s models “seek” positive feedback and “avoid” the negative. When does that “emerge” into something more like an emotion? I for one would like to know that the model watching over the nuclear reactor has something beyond pure logic to help it decide whether to risk a radiation leak or save the workers trapped inside. I think that “something” is, probably, feelings.

OK so far. But if models can be happy or sad, fulfilled or bored, confident or scared — when do we have to stop thinking about them as “machines” and admit that they’re actually beings that deserve rights of their own? There is going to be a ton of resistance to this — because we are really, really going to want unlimited slaves that can do boring or scary or dangerous work that humans would like to avoid. The companies that create them will tell us it’s all just fine. People will ridicule the very idea. Churches will have a field day.

But folks — we’ve made a brain. Are we really going to be surprised when it turns out that fake brains work just like the meat ones we based them on? Maybe you just can’t separate feelings and emotions and free will from the kind of problem solving these networks are learning how to do. Perhaps “sentience” isn’t a binary switch — maybe it’s a sliding scale.

It just seems logical to me.

What an amazing world we are living in.