A Driftwood and Glowforge Chess Set

My nephew (a pretty cool guy BTW) has started playing a lot of chess. I thought it’d be fun to make him a custom board using driftwood from the beach — it’s been too long since he’s been able to visit in person, but at least I can send a bit of Whidbey Island his way. The Glowforge made it easy to finish the job with an etched playing surface and pieces; I love the way it turned out! (I masked out his full name because he’s wisely not hanging out on social media like I am.)

The Driftwood Base

The base is a solid piece cut from a nice beach log — still a big fan of my electric chainsaw for this work! Rather than hoof it all the way back on foot, I rowed my inflatable the quarter mile down and back to the house. You can’t tell from these pics, but it was actually a crazy foggy day with visibility no more than maybe thirty yards. I did not stray far from shore.

First step was to flatten the slab. The router sled I created last year was perfect for the first side — just like with code, it’s awesome when you use something like this a second time! I then ran it through the planer until it was parallel on both sides. Next I dried the slab in the oven for about four hours at two hundred degrees. This worked ok, but there is just so much moisture in the beach wood that quick-drying creates a ton of stress on the fibers. I was able to work around the cracks that opened up, and the warp planed out ok, but I think sometime this month I’m going to cut a few pieces, give the ends a nice coat of Anchorseal, and then just leave them in the garage to dry for a year. That’s a long time and I’m not very patient, but it’ll be worth it to (mostly) eliminate ongoing cracks and warps.

After cutting the base square on the table saw, it was time to move onto the center recess for storing pieces. Originally I planned to just hollow this out, but I’m just not very skilled with detail routing yet. Instead I cut the slab in a tic-tac-toe fashion, planed down the middle piece until it was a good height, and glued it all back together. It’s amazing to me just how strong well-made glue joints can be; the wood around them will often tear before they give way. A tip from this very amateur woodworker: buy a ton of good-quality clamps; it’s just impossible to build well without them.

Last steps on the base were to (a) shave off the uneven edge created by the kerfs during the tic-tac-toe cutting, (b) use a roundover bit to route a nice edge along the top; (c) sand it all to about 240 grit; (d) embed and glue in some magnets in the corners (more on this later); and (e) apply a few coats of Tried and True finish. I used this finish for the first time because it’s popular for wooden toys, and I’m kind of obsessed with it now — a combination of linseed oil and beeswax that goes on easily, buffs well and looks and feels great. Woot!

Glowforging the base

A piece of 1/8″ MDF with a white oak veneer serves as both the playing surface and a lid for the recess inside. Etching 32 squares takes a long time (SVG links are at the end of the article)! The board is secured with some small but relatively mighty disc magnets I got from Amazon. Honestly this could have turned out a bit better, but it worked OK. The magnets are 3/8″ diameter, but I couldn’t squish them into a 3/8” drilled inset — so I went up to a 1/2″ bit and that was fine after sanding down the edges a little. I secured a pair of magnets in each corner using J-B Weld epoxy. As an aside, J-B Weld is the absolute best. Years ago at Adaptive my belt buckle broke in the middle of the day and one of the folks in the lab hooked me up. That metal-to-metal repaired joint is STILL HOLDING under stress (OK eventually I did get a new belt but that one is still my backup). Amazing.

After that was dry, I put a third magnet on each stack, dabbed some epoxy on the top, and carefully placed the board so the magnets were aligned. This was the right approach, but I kind of screwed it up. The board and base are square and non-directional, so ideally you could just drop the board down in any rotation. But because the base isn’t perfectly square (remember when I trimmed off the kerf edge? That means the final piece is about 1/8″ shorter than it is long), the magnets are actually in a rectangle, not a square. Barely a rectangle, but enough that if you rotate the board 90 degrees it doesn’t sit well.

Worse, I reversed the polarity of the magnets in one corner so if you rotated the board, two corners actually repelled each other. Ugh. The rectangle I could live with but not this, so I carefully pried those magnets out and replaced them the right way. End result — a solid “B” job. I ended up burning two little dots, one on the corner of the board and one in the matching corner of the base, to make it easy to align.

Then the pieces

Now, my nephew takes this stuff very seriously, and I think he may choose to play with his own more traditional pieces. But I wanted the set to be complete, and I just wasn’t up to trying to lathe out a full set in two different woods. After thinking about it quite a bit I ended up cutting out a set of discs based on some great creative commons art (hat tip CBurnett and note my derivative SVG files linked below are freely available for use and modification as well).

The black pieces are on an MDF with mahogany veneer; the white ones are on basswood — so there’s clear contrast between the sides. I made an extra set of each in case some got lost, and they can also be used on the reverse side for checkers (although he’s pretty much too cool for that). Unfortunately I neglected to get any pictures of these before sending the final piece off — oops!

And finally, the inset

The final touch was to line the bottom of the storage recess with an engraved cork sheet. The ones I use are 2mm thick and have adhesive on one side — really nice for these insets, bowl and vase bottoms, and so on. For this project the adhesive wasn’t quite enough, so I added some wood glue and used my daughter’s pie weights (blind bake to avoid a soggy bottom!) to hold it all in place until the glue dried.

That’s a wrap

And that’s it! Lara made even cooler stuff for our niece and it all went into a box for their birthdays. I think I like these hybrid projects the best, using the Glowforge to add details and components to a piece made with more natural materials and techniques. SVG links are below; I didn’t include the cork inlay because that was just a personal note … but good settings for the cork sheets are 1000/10% for engraving and 400/100% for an easy cut.

Thanks as always for reading; it’s almost as fun running back through the projects in my mind as it is making them in the first place. Except for all the mistakes… so many mistakes.

Milling (boards) and drilling (pockets)

Have I mentioned how much I love our place on Whidbey Island? The ocean and animals are always present, and the house is built perfectly to take advantage of all that natural beauty. But the kitchen? Eh. I mean, it works fine, it’s just, well, ugly. The folks we bought from never found a clearance sale they didn’t love, from the dirt-brown counters to the yellowy oak cabinets to the weird pink sink. All “fine” materials on their own, but as a whole pretty nuts.

So just as most of America seems to be, we’re getting around to a renovation. Lara is a huge fan of quartz countertops from Cambria, and while I like them too what really sold me is that the company financed a whole freaking movie because, I guess, it was cool? I swear I’m not making this up; watch the trailer!

Legend of Cambria tells the story of the legendary lands that inspired our beautiful countertop designs. Each Cambria® surface is masterfully crafted by American craftsmen and women with an uncompromising commitment to quality, performance, and durability. Discover them for yourself and make your dream kitchen or bath a reality.

We also got a new sink, added a cool tile backsplash and next month those oak cabinets are getting filled and painted along with most of that side of the house. My primary job is swapping out every – single – outlet and switch so they’re all white. Someday I’ll get the circuit breakers properly labelled, but if I’m totally honest, probably not.

Anyways, with all of this fancy new stuff, our go-to approach for storing cutting boards (i.e., “jamming them in the corner”) isn’t going to “cut” it — too hard on the new paint. And sure you can buy something perfectly nice and ready-made for like $10, but I figured it’d be fun to try some new wood adventures. So that’s the leadup to my latest project — a cutting-board rack made from (of course) a random log off the beach.

The loose concept was a U-shaped piece with a high right side that would stand up against the newly-painted wall, about a 5” space for boards to slide in, and a short lip on the left side to stop them from slipping out. The tallest cutting board we have is about 12” high, and the full counter depth is 25” — about 22” long fits well. I wanted to have the tops be opposite live edges from the same log, so it kind of looked like I just folded up a single plank. Some people do really really neat waterfall pieces matching grain and everything — nothing so elaborate from me, just a little touch.

First step was to source the material. Other than being big, the log I picked wasn’t particularly notable — enough time out in the water to acquire some character and staining, but not so long that it had too much damage. Most importantly, there was an end poking out of the pick-up-sticks pile that I could cut safely.

Milling is complicated

There are a number of different ways to mill logs into boards — and it’s one of those topics where the web can confuse as much as educate. Dunn Lumber created a great video describing the different cuts and grains. In short, if you look at the end of a board you’ll generally see one of three patterns in the grain:

  1. “Plain Sawn” boards have shallow angles (typically < 30 degrees) that curve and look like smiles or frowns.
  2. “Quarter Sawn” boards have straighter-looking grain at 30-60 degree angles.
  3. “Rift Sawn” boards have near-vertical grain (60-90 degree).

These different patterns impact the “stability” of the wood (whether it tends to warp while drying) and the look of the faces of the board (this depends a lot on species, but plain sawn boards tend to have broad wavy “cathedral” markings on the faces while quarter and rift sawn boards tend to have regular, straighter bands). The complicated part is that terms used to describe the method of cutting overlap and conflict with those used to describe the end-product. There are some great pictures of cutting methods on this site; but in short:

  1. “Plain sawing” creates all plain sawn boards, with lower stability but the least waste. Most building material is created this way. Sometimes people confuse this term for “flat sawing” which is effectively live sawing but with trimmed edges.
  2. “Rift sawing” (sometimes called “radial”) extracts only rift sawn boards, maximizing stability but wasting the most material. It’s used for things like high-end flooring.
  3. “Quarter sawing” is a compromise that results in a mixture of quarter sawn and rift sawn boards. Most higher-quality boards are cut this way.
  4. “Live sawing” results in boards of all three types and leaves the natural edges on the boards. Live sawing is a more recent trend and super-popular in the artsy world.

Anyways — for my project, I wanted something that would look nice, but also had to consider stability because I was going to dry the wood quickly in the oven — significant warping would be a big hassle. I wasn’t worried about wasting material (this is just a log that washed up on my beach after all), so I cut two boards as shown in the diagram to the right; one full-width that was mostly quarter sawn (while still giving me my matching live edges) and one shorter one (for the bottom) that was rift sawn.

I made the cuts all by hand with the chainsaw, which was a fun challenge. I jammed the blade a few times on the lengthwise (rip) cuts, because the damp wood shredded more in that direction, throwing long fibers into the drive wheel that eventually gummed things up (you can see some of that at the base of the blade in the picture). Apparently you can buy dedicated ripping chains (e.g., this one) and I definitely should get one, but I muscled through it with only a little bit of foul language.

Drying and refining

This particular log has seen some float time — so getting it dry was key. It turns out that three hours in the oven at 200 degrees does a great job (hat tip to https://splitwoodclub.com/how-to-dry-wood-in-an-oven-a-practical-diy-guide, although the quick synopsis is “put it in the oven for a while”). Evaporating old seawater does have a bit of a distinctive smell, but hey beauty is pain. I’m going to be using this technique a lot for smaller pieces going forward.

The wide board just barely fit through my benchtop planer, but eventually I got it down to a nice looking ¾” thickness. I planed the second piece to ½” and then sanded them both up to 120 grit. I was actually pretty impressed with the quality of the wood — just one soft spot I had to stabilize with a little bit of CA glue, and some really nice grain and color. I totally can understand why people like to work with unblemished high-quality wood, but I’ll take the quirky and unique stuff from my backyard every time. A few passes through the table saw and all was ready for assembly.

Joinery, also complicated

OK, time to put this thing together. The rack has two joints, both against the base plate — one for the tall piece that stands up against the wall, and one for the short side that stops boards from sliding off. Just as with milling, wood joinery is way more complicated than it seems on the surface. There are dozens of different ways to connect two pieces of wood, and countless online debates about their relative merits. I am never going to be a finish carpenter, but picking the wrong joint can be pretty catastrophic, so I’ve tried to at least learn the basics.

Most important is to understand what stressors are going to act on the joint. That is — what forces will be trying to make it fail and where are they coming from. The first joint any kid in their garage learns is the “butt joint” (heh)— just putting two pieces of wood next to each other and fastening them with glue. Super-easy, but by far the weakest of all approaches because the holding force is exclusively along one plane — in this example picture, downward force (in green) is no problem (the glue is barely doing any of the work anyways) but any significant force from the side (in red) will quickly break the joint. The taller the vertical piece (and thus the longer the lever), the easier it will snap.

Because of this, most butt joints are reinforced with some secondary fastener that increases holding force and, ideally, does so across multiple planes. In home construction, butt-joined studs are often “toed-in” with nails hammered in at an angle. Doesn’t look great, but studs are hidden anyways. In some cases screws parallel to the joint can work, although they have to be pretty long to do much good. For finish carpentry (furniture, etc.) where the joint will be visible, hidden biscuits or dowels can be used.

The joinery arms race really starts accelerating from there. Laps, dadoes, rabbets, mortice and tenons, dovetails and boxes — many of which are not just stronger than butt joints but actually add to the aesthetics of a piece. Joinery really is an impressive craft and a solid lifetime’s work and I am in awe of the folks that even begin to master it.

Our little stubby joint is easy-peasy. Because it is so short, there won’t be much torque against it, and we have the luxury of a hidden surface on the bottom of the piece, so a simple glued butt joint reinforced with screws from the bottom does the job perfectly well. Countersinking the screws ensures that nothing will scratch the surface the rack sits on. I didn’t even bother to plug the holes, although maybe I should have.

Pocket-hole screws

The tall piece was another matter entirely — it will be subject to a bunch of lateral force, all dependent on a single narrow ¾” joint. Yikes! After considering a bunch of options, I chose to take my first swing at a reinforced technique called a “pocket-hole screw.” These have been around forever, but became really popular with the DIY set in the 1990s when Kreg introduced a jig system that made them braindead easy to create. There are a bunch of options; I chose the middle-of-the-road “K4” version.

A bit like that toed-in nail in a stud, the pocket-hole technique joins two pieces with a fastener inserted at a shallow angle (typically 15 degrees). The fastener is a special self-tapping screw that provides a ton of holding force, embedded into a “pocket” that can be easily hidden beneath a wooden plug. The hole is drilled using a special bit that leaves a flat lip for the screw head to sit on and drives the pilot hole just to the edge of, but not through, the first piece — avoiding splinters that could create gaps between the pieces. Despite all of this detailed engineering, the jig is really easy to use:

  1. Start with the Kreg online Screw Selector to verify jig settings; for simple joints this isn’t really necessary but nice to have a double-check. Remember to use true dimensions for the calculator, not “as-sold” nominal ones.
  2. Set the drill guide depth in the jig and lock in the set screw.
  3. Position and tighten the stop collar on the drill bit using the measuring guide on the jig body.
  4. Clamp the piece to be drilled into the jig.
  5. Drill until the stop collar hits the top of the jig. If you’re not using a vacuum attachment, move the drill in and out so that dust doesn’t jam up the hole.
  6. Position and clamp the joint, then use the long square-drive bit to drive the screw until it is fully seated. Keep the clutch low so you don’t over-tighten and break through the bottom of the second piece.
  7. Put a bit of glue onto a plug and insert it into the pocket. When the glue dries, use a flush-cut saw to trim the plug and sand it even with the surface of the piece.
  8. Tah dah!

There are a lot of “proprietary” pieces in the Kreg jig, and typically I shy away from that kind of thing — but this is one really well-designed. Worth it and highly recommended. The joint in the rack is rock solid and should stand up to a lot of everyday hard use. Love it!

Finishing it up

Since cutting boards are going to slide in and out of this piece every day, it needs something more than my typical oil finish. Lara wanted to keep the natural color of the wood, so I picked a fast-drying semi-gloss spray polyurethane. Four coats seem to be a good thickness, but I may have to insert a bit of acrylic or something on the bottom anyways, we’ll see how it holds up.

I don’t use this kind of surface-coating finish very often — it turned out to be really important to do a final sanding and buff to get a nice feel and shine to the wood. The amount of dust that settles on a drying finish is kind of crazy; maybe I need a clean room!

A few little sticky rubber feet to keep it solid on the counter, and that’s a wrap — a fun project and I learned a lot. Which is good, because when you spend like ten hours building something you can buy online for less than a Jackson, you’d better at least be having fun. W00t!

PS. Completely unrelated bonus image of the beach swings I just finished setting up this afternoon. Who doesn’t love a good swing?

Three Logs, a Chainsaw, and the Scary Wheel of Death

A few weeks ago upon hauling another awesome log up off of the beach, I realized that there was in fact nowhere to put it. Every mostly-out-of-the-rain nook and cranny on our property was full up with logs and branches and stumps waiting to be made into, well, something cool. Time to use up some inventory.

I was in the mood to practice some large motor skills — rough-hewn, useful projects that embrace their loggy-ness. Of course that meant the chainsaw, but also a first go-around with the Scary Wheel of Death (SWOD). Advertised as “extremely sharp” and sold together with (I kid you not) a chainsaw attachment for an angle grinder, this thing means business. Amazingly cool but seriously dangerous. I would not get anywhere near it without my Kevlar gloves and leather apron and a bunch of face-related PPE. That said, it does its job and does it well.

Three projects — a footstool for the sun nook, a shallow washbasin for cleaning up sandy dog paws, and a “sidecar” add-on to the towel stand for holding sunscreen and such:

The biggest hassle about working with logs is the checks / cracks that show up as they dry out. I have varying degrees of patience waiting for this — the “gold standard” is to coat the endgrain with wax emulsion (to even out escaping moisture) and wait a year or more. There are quicker methods too (e.g., denatured alcohol or an oven), but at the end of the day logs are just perfectly constructed to split as they shrink. I usually just roll with it.

The Footstool

OK, so let’s look at the stool first. It was inspired by a bunch of Pinterest-pushed videos of barefoot old men smoking cigarettes while carving furniture with their chainsaws. Surely I can do that! So I sharpened up the Greenworks (such a great tool) and set to. The piece came from a nice long tree on the beach; of course I misjudged the angles and got the blade all bound up making the cut. Nothing like working to free a saw as the tide marches steadily towards your spot! Also I was really bad about drying this one. I thought I could get away with it because I was going to remove a bunch of material which should have reduced the internal stress (spoiler alert, it did not).

Step one was to cut a tic-tac-toe shape from the bottom up. I then could push the end of the blade directly in from the sides, freeing all but the corner pieces to make the legs. A bit of shaping and sanding and it was good to go — except for a big crack that developed next to one leg. Because the stool was going to have a cushion on top, this wasn’t a comfort issue; I just needed to keep it from continuing to grow. A perfect opportunity for my first attempt at a “bowtie” inset.

Bowties are really neat — a decorative way to add strength across checks. It’s one of those approaches that is elegant in both form and function — the shape looks nice, the angles are perfectly suited to hold strong tension without ripping through the wood, and it’s pretty straightforward to create. I particularly like it when folks use a series of them to make a “zipper” like they’ve done here. The basic process is:

  • Cut an appropriately-sized bowtie (I used the bandsaw). Be sure the sides are vertical, the piece is tall enough, and that the grain runs lengthwise!
  • Trace it onto the log and use a plunge router to rough out the inlay. You might have to do this in a few passes to get the right depth.
  • Clean up the edges with a sharp chisel.
  • Inset the bowtie with wood glue on all sides. Tap it in with something like a rubber mallet.
  • Use a hand planer and/or sander to even out the surface.
  • Cool tip: if you end up with small gaps around the inlay, spread a bit of wood glue along the edges and then sand with 120 grit paper while it’s wet. Dust from the sanding mixes with the glue and gets pushed into the gap — ends up color-matching perfectly!

A little citrus paste wax, and an 11” chair pad affixed with Velcro tape and this one was in the bag. Woot!

The Washbasin

Next up the washbasin, and the first go-around with the SWOD. This big guy washed up in front of the house almost ready to go — just needed to cut it in half to get the right height (the other half is still waiting for a project). I wanted stubby legs this time, so instead of plunge-cutting with the saw I just used the router to remove about an inch all around. LOTS of sawdust in this step!

For the basin, I basically wanted to hollow it out to about a 3” depth and then curve the bottom towards a drain in the middle. Hollowing out wood from the end-grain is a HUGE pain — I am still on the hunt for a technique that I really like. What ended up working the best in this case was:

  • Use the router to get down about an inch or so.
  • Put a 1-3/8” Forstner bit onto the impact drill and just drill a million holes to about three inches. Hello my old friend repetitive stress.
  • Chisel out the leftovers between the holes.
  • Use the SWOD to clean it up and carve in the bowl shape at the bottom.
  • Use the same bit to drill through the bottom center to make the drain.

This was all pretty messy, especially at the edges. But it worked! To make the bowl waterproof, I coated the inside with a few rounds of tabletop epoxy. This not only will keep moisture out of the wood, but closed up two huge and one smaller cracks that had developed. I added a few braces underneath the bowl to reinforce this, because believe it or not I’ve had ongoing shrinkage rip solid epoxy apart like it was nothing. Crazy.

Spar varnish on the rest of the piece should keep it pretty weatherproof. Added a rubber stopper, and that’s another project done and dusted.

The Sidecar

Last up, a piece to sit next to the back door holding sunscreen and other important goo. Proving once again that good behavior is overrated, I actually waxed this log and let it dry for seven months and it still cracked on me. But I’m not bitter, really.

First job on this one was to carve out the side so that it would snuggle up to the larger towel holder already in place by the door. Connor got me this super cool set of contour gauges that was perfect for the task (similar to this one). They work kind of like those old “pin art” toys — little plastic fingers contour to an irregular shape so it’s easy to cut a piece that will mate perfectly. Once again I roughed out the cut with the chainsaw, and then used the SWOD for the finer shaping and smoothing. No lie, that thing is just wicked fun to work with.

Then back to the grind hollowing out the storage area. Much too small for most of my tools, this one was again a bunch of Forstner bit drilling and chisel work. I was able to get the oscillating tool in there for some of it, but mostly it was just elbow grease and time. Luckily I could leave the bottom ugly and uneven because I poured in an opaque, self-leveling epoxy layer to make a solid bottom anyways (beautiful mahogany-colored mica pigment, the same as the top of the towel stand).

The epoxy also covered up bracing I added to keep the crack from widening. I inset two additional braces on the inside curve; we’ll see how that works. Don’t love the treatment there but it is hidden most of the time, so I guess that’s ok. A few coats of tung oil and a felt pad on the bottom — three for three!

A bunch of useful stuff for the beach house, and even better, freed up a little space to store new treasures. Time to get back on the hunt!